IEEE Brain: Multimodal Imaging in Understanding Brain Diseases

This video program is a part of the Premium package:

IEEE Brain: Multimodal Imaging in Understanding Brain Diseases


  • IEEE MemberUS $10.00
  • Society MemberUS $0.00
  • IEEE Student MemberUS $10.00
  • Non-IEEE MemberUS $20.00
Purchase

IEEE Brain: Multimodal Imaging in Understanding Brain Diseases

0 views
  • Share
Create Account or Sign In to post comments
The advances in neuroimaging in the last decades have bridged the translational gap, and enabled our understanding of brain under physiological and disease conditions. Multiscale and multimodal imaging such as positron emission tomography, magnetic resonance imaging, optoacoustic and fluorescence imaging have provide molecular, structural, and functional insights at cellular, circuit and whole brain levels. The use of maging biomarkers has also assisted the early and accurate diagnosis of brain disorders, and facilitated personalized medicine. This webinar will focus on the development of novel brain imaging techniques, as well as their application in the field of Alzheimer?s disease. Multimodal high-resolution imaging tools were developed for non-invasive visualization of the neuropathology (amyloid-beta and tauopathy), brain connectivity, and atrophy in mouse models of Alzheimer?s disease.
The advances in neuroimaging in the last decades have bridged the translational gap, and enabled our understanding of brain under physiological and disease conditions. Multiscale and multimodal imaging such as positron emission tomography, magnetic resonance imaging, optoacoustic and fluorescence imaging have provide molecular, structural, and functional insights at cellular, circuit and whole brain levels. The use of maging biomarkers has also assisted the early and accurate diagnosis of brain disorders, and facilitated personalized medicine. This webinar will focus on the development of novel brain imaging techniques, as well as their application in the field of Alzheimer?s disease. Multimodal high-resolution imaging tools were developed for non-invasive visualization of the neuropathology (amyloid-beta and tauopathy), brain connectivity, and atrophy in mouse models of Alzheimer?s disease.